COMPUTER SCIENCEMATHEMATICAL SCIENCES (COMBINED MAJOR)

The purpose of the combined program is to provide a thorough background in both allied disciplines and to inculcate a deeper understanding of their goals and methods. A student must complete 60 credits in the two disciplines:

- 30 of these credits in Computer Science courses and
- 30 of these credits in Mathematical Sciences courses

Each student plans a program in consultation with a Computer Science and a Mathematical Sciences advisor. Students planning to attend graduate school in computer science or the mathematical sciences should consult with their respective advisors.

Bachelor of Science - Computer SciMathematical Sci

College Humanities \& Sciences
Degree Specific Credits: 73
Required Cumulative GPA: 2.0
Catalog Year: 2017-2018
General Education Requirements
Information regarding these requirements can be found in the General Education Section (http://catalog.umt.edu/academics/general-education-requirements) of the catalog.

Sumpary	
Mathematical Sciences	31
Computer Science	30
Science Requirement	$9-10$
Biology	
Chemistry	3
Physics	3
Public Speaking Requirement	$76-77$
Advanced College Writing Requirement	
Total Hours	

Mathematical Sciences

Rule: Complete the following subcategories.
31 Total Credits Required

Mathematical Sciences Core

Rule: Complete all of the following courses.

M 171	Calculus I	4
or M 181	Honors Calculus I	
M 172	Calculus II	4
or M 182	Honors Calculus II	4

M 273	Multivariable Calculus	4
M 307	Introduction to Abstract Mathematics	3
or M 225	Introduction to Discrete Mathematics	
Total Hours		19

Minimum Required Grade: C-

Mathematical Sciences Electives

Rule: Complete 12 credits from the following courses.
Note: The combined nine credits of Computer Science Electives and twelve credits of Mathematical Sciences Electives must include at least three 3- or 4-credit courses numbered 400 or above, with at least one chosen from each department (not including M 429 and STAT 451, STAT 452).

Complete 12 credits from the following courses	
M 311	Ordinary Differential Equations and Systems
M 325	Discrete Mathematics
M 326	Number Theory
M 361	Discrete Optimization
M 362	Linear Optimization
M 381	Advanced Calculus I
M 412	Partial Differential Equations
M 414	Deterministic Models
M 429	History of Mathematics
M 431	Abstract Algebra I
M 432	Abstract Algebra II
M 439	Euclidean and Non?Euclidean Geometry
M 440	Numerical Analysis
M 445	Statistical, Dynamical, and Computational Modeling
M 461	Practical Big Data Analytics
M 462	Theoretical Basics of Big Data Analytics and Real Time Computation Algorithms
M 472	Introduction to Complex Analysis
M 473	Introduction to Real Analysis
M 485	Graph Theory
STAT 341	Introduction to Probability and Statistics
STAT 421	Probability Theory
STAT 422	Mathematical Statistics
STAT 451	Statistical Methods I STAT 452 Statistical Methods II Total Hours

Minimum Required Grade: C-

Computer Science

Rule: Complete the following subcategories.

30 Total Credits Required

Computer Science Core

Rule: Complete all of the following courses.

CSCI 106	Careers in Computer Science	1
CSCI 135	Fund of Computer Science I	3
CSCI 136	Fund of Computer Science II	3
CSCI 205	Programming Languages w/ C/C++	4
CSCI 232	Data Structures and Algorithms	4
CSCI 332	Design/Analysis of Algorithms	3
CSCI 361	Computer Architecture	3
Total Hours		21

Minimum Required Grade: C-

Computer Science Electives

Rule: Complete 9 credits from the following courses.
Note:

1. A total of at most three of the nine credits of Computer Science Electives may be in CSCl 398 or CSCl 498.
2. The combined nine credits of Computer Science Electives and twelve credits of Mathematical Sciences Electives must include at least three 3- or 4-credit courses numbered 400 or above, with at least one chosen from each department (not including M 429 and STAT 451, STAT 452).

Complete 9 credits from the following		9
CSCI 315E	Computers, Ethics, and Society	
CSCI 323	Software Science	
CSCI 340	Database Design	
CSCI 390	Research	
CSCI 391	Special Topics	
CSCI 394	Seminar	
CSCI 398	Internship	
CSCI 411	Advanced Web Programming	
CSCI 412	Game and Mobile App	
CSCI 426	Adv Prgrmng Theory/Practice I	
CSCI 427	Adv Prgrmng Theory/Practice II	
CSCI 441	Computer Graphics Programming	
CSCI 443	User Interface Design	
CSCI 444	Data Visualization	
CSCI 446	Artificial Intelligence	
CSCI 447	Machine Learning	
CSCI 448	Pattern Recognition	
CSCI 451	Computational Biology	
CSCI 460	Operating Systems	
CSCI 464	Applications of Mining Big Data	
CSCI 466	Networks	
CSCI 477	Simulation	
CSCI 480	Applied Parallel Computing Techniques	
CSCI 490	Research	
CSCI 491	Special Topics	
CSCI 494	Seminar	
CSCI 498	Internship	
CSCI 499	Senior Thesis/Capstone	
Total Hours		9

Minimum Required Grade: C-

Science Requirement

Rule: Complete the course work from 1 of the following subcategories.

9-10 Total Credits Required

Biology
Rule: If you choose biology, complete all of the following courses.

BIOB 160N	Principles of Living Systems	3
BIOB 161N	Prncpls of Living Systems Lab	1
BIOB 170N	Princpls Biological Diversity	3
BIOB 171N	Princpls Biological Dvrsty Lab	2
Total Hours		9

Minimum Required Grade: C-

Chemistry

Rule: If you choose chemistry, complete all of the following courses.

CHMY 141N	College Chemistry I	5
\& CHMY 142N	and College Chemistry I Lab	
CHMY 143N	College Chemistry II	5
\& CHMY 144N	and College Chemistry II Lab	

Total Hours 10

Minimum Required Grade: C-

Physics

Rule: If you choose physics, complete all of the following courses.

PHSX 215N	Fund of Physics w/Calc I	4
PHSX 216N	Physics Laboratory I w/Calc	1
PHSX 217N	Fund of Physics w/Calc II	4
PHSX 218N	Physics Laboratory II w/Calc	1
Total Hours		10

Minimum Required Grade: C-

Public Speaking Requirement

Rule: Complete 1 of the following courses.
COMX 111A Intro to Public Speaking 3 or COMX 242

Argumentation
Total Hours
Minimum Required Grade: C-

Advanced College Writing Requirement

Rule: Complete 1 of the following courses.
Note: Any other approved Advanced College Writing course will also fulfill this requirement.

Select 3 credits from the following:

CSCI 315E Computers, Ethics, and Society
CSCl 499 Senior Thesis/Capstone
M 429 History of Mathematics

M 499	Senior Thesis
Total Hours	3

Minimum Required Grade: C-

Suggested Curricula

Note: Students are encouraged to choose their Computer Science and Mathematical Sciences Electives according to one of the following curricula; these tracks are suggestions only and, as such, optional. Note that the suggested curricula do not include an advanced College Writing Course.

Combinatorics and Optimization-Artificial Intelligence		
M 361	Discrete Optimization	3
M 362	Linear Optimization	3
Select two of the following:	6	

M 325	Discrete Mathematics	
M 414	Deterministic Models	
M 485	Graph Theory	
STAT 341	Introduction to Probability and Statistics	3
CSCI 446	Artificial Intelligence	3
CSCI 447	Machine Learning	3
CSCI 460	Operating Systems	21

Data Science (Big Data Analytics)

M 461	Practical Big Data Analytics	3
M 462	Theoretical Basics of Big Data Analytics and Real Time Computation Algorithms	3
STAT 341	Introduction to Probability and Statistics	3
STAT 451	Statistical Methods I	3
STAT 452	Statistical Methods II	3
Select three of the following:	9	

CSCI 444	Data Visualization
CSCI 447	Machine Learning
CSCI 448	Pattern Recognition

CSCI 464	Applications of Mining Big Data	
CSCI 480	Applied Parallel Computing Techniques	
Total Hours		24

Statistics-Machine Learning

STAT 341 Introduction to Probability and Statistics 3
STAT 421 Probability Theory 3
Select two of the following: 6

M 325	Discrete Mathematics
M 362	Linear Optimization
M 485	Graph Theory
STAT 422	Mathematical Statistics

Select three of the following: 9

CSCI 340	Database Design	
CSCI 444	Data Visualization	
CSCI 446	Artificial Intelligence	
CSCI 447	Machine Learning	
CSCI 451	Computational Biology	21

Algebra-Analysis

M 381	Advanced Calculus I	3
M 431	Abstract Algebra I	4
Select two of the following.	$7-8$	

Select two of the following: 7-8

M 326	Number Theory	
M 432	Abstract Algebra II	
M 472	Introduction to Complex Analysis	
M 473	Introduction to Real Analysis	3
CSCI 426	Adv Prgrmng Theory/Practice I	3
CSCI 460	Operating Systems	3
CSCI Elective		$23-24$
Total Hours		3

